Fuzzy connectedness and image segmentation
نویسندگان
چکیده
Image segmentation—the process of defining objects in images—remains the most challenging problem in image processing despite decades of research. Many general methodologies have been proposed to date to tackle this problem. An emerging framework that has shown considerable promise recently is that of fuzzy connectedness. Images are by nature fuzzy. Object regions manifest themselves in images with a heterogeneity of image intensities owing to the inherent object material heterogeneity, and artifacts such as blurring, noise and background variation introduced by the imaging device. In spite of this gradation of intensities, knowledgeable observers can perceive object regions as a gestalt. The fuzzy connectedness framework aims at capturing this notion via a fuzzy topological notion called fuzzy connectedness which defines how the image elements hang together spatially in spite of their gradation of intensities. In defining objects in a given image, the strength of connectedness between every pair of image elements is considered, which in turn is determined by considering all possible connecting paths between the pair. In spite of a high combinatorial complexity, theoretical advances in fuzzy connectedness have made it possible to delineate objects via dynamic programming at close to interactive speeds on modern PCs. This paper gives a tutorial review of the fuzzy connectedness framework delineating the various advances that have been made. These are illustrated with several medical applications in the areas of Multiple Sclerosis of the brain, magnetic resonance (MR) and computer tomographic (CT) angiography, brain tumor, mammography, upper airway disorders in children, and colonography.
منابع مشابه
Adaptive Fuzzy Connectedness-Based Medical Image Segmentation
In this paper, we present an enhancement of the fuzzy connectedness-based image segmentation method based on dynamic computation of adaptive weights for the homogeneity and the directional gradient energy functions. Adaptive weights enhance the performance and robustness of the conventional fuzzy connectedness-based segmentation while decreasing the degree of user interaction. The accuracy of t...
متن کاملUnsupervised Image Segmentation Based on Fuzzy Connectedness with Sale Space Theory
In this paper, we propose an approach of unsupervised segmentation with fuzzy connectedness. Valid seeds are first specified by an unsupervised method based on scale space theory. A region is then extracted for each seed with a relative object extraction method of fuzzy connectedness. Afterwards, regions are merged according to the values between them of an introduced measure. Some theorems and...
متن کاملA Novel Unsupervised Segmentation Method for MR Brain Images Based on Fuzzy Methods
Image segmentation is an important research topic in image processing and computer vision community. In this paper, we present a novel segmentation method based on the combination of fuzzy connectedness and adaptive fuzzy C means (AFCM). AFCM handles intensity inhomogeneities problem in magnetic resonance images (MRI) and provides effective seeds for fuzzy connectedness simultaneously. With the...
متن کاملMR intensity standardization and fuzzy segmentation of MR images
Lifetime from: 1997 Lifetime to: 2000 Short description: We developed an image processing method for MRI intensity standardization. We also introduced new, fast implementations of the fuzzy connectedness algorithm that allows segmentation at interactive speeds. We developed a new segmentation "workshop" for brain MRI segmentation using standardized MR images and the fast fuzzy connectedness alg...
متن کاملImage segmentation via fuzzy object extraction and edge detection and its medical application
A new interactive segmentation method that combines fuzzy connected object extraction and edge detection is proposed. Fuzzy connectedness is a global fuzzy relation, which effectively captures fuzzy “hanging togetherness” of image elements. First, by selecting the seed point, fuzzy connectedness value between each image element and the seed point is computed via dynamic programming. Then, throu...
متن کاملTwo Methods for Semi-automatic Image Segmentation based on Fuzzy Connectedness and Watersheds
At the present time, one of the best methods for semiautomatic image segmentation seems to be the approach based on the fuzzy connectedness principle. First, we identify some deficiencies of this approach and propose a way to improve it, through the introduction of competitive learning. Second, we propose a different approach, based on watersheds. We show that the competitive fuzzy connectednes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the IEEE
دوره 91 شماره
صفحات -
تاریخ انتشار 2003